AROA ECM™ is a proprietary extracellular matrix (ECM) biomaterial containing a rich and complex mix of biological molecules that is the building block for our range of soft tissue repair products.
AROA ECM™ is manufactured from the ovine (sheep) forestomach tissue, sourced exclusively from New Zealand pasture-raised animals.(1) The source tissue is minimally processed to separate tissue layers and decellularize the tissue ECM. The resulting bioscaffold technology has the structure, composition and function of the ECM that is found in all our soft tissues.(1)
1. S. Lun, S. M. Irvine, K. D. Johnson, N. J. Fisher, E. W. Floden, L. Negron, S. G. Dempsey, R. J. McLaughlin, M. Vasudevamurthy, B. R. Ward and B. C. May: A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials, 31(16), 4517-29 (2010) doi:10.1016/j.biomaterials.2010.02.025.
Cells and the surrounding soft tissue extracellular matrix (ECM) constantly interact to modulate tissue physiology in a process called dynamic reciprocity.(1) In this process, matrix components play an important role in regulating tissue growth, maintenance and orchestrating the process of tissue regeneration. AROA ECM™ retains the authentic structure, signaling and substrates of tissue ECM to help guide tissue repair.(2, 3) Furthermore, AROA ECM™ retains the delicate micro-architecture of tissue ECM to influence the way cells attach, migrate, grow and differentiate.(4)
AROA ECM™ contains more than 150 ECM proteins that are known to be important in the healing process including structural proteins, adhesion proteins, proteoglycans, growth factors and basement membrane.(5) Components in the AROA ECM™ are also shown to attract stem cells.(6)
AROA ECM™ also contains residual vascular channels,(7) that facilitate the rapid establishment of a dense capillary network by supporting migrating endothelial cells to establish new vasculature and a robust blood supply to help build new tissue.(8)
AROA ECM™ is non-cross-linked to preserve the native matrix structure and reduce the risk of negative inflammatory responses due to cross-linking.(9) All AROA ECM™ products are shelf stable and terminally sterilized (ethylene oxide).
1. G. S. Schultz, J. M. Davidson, R. S. Kirsner, P. Bornstein and I. M. Herman: Dynamic reciprocity in the wound microenvironment. Wound Repair Regen, 19(2), 134-48 (2011) doi:10.1111/j.1524-475X.2011.00673.x. 2. S. Lun, S. M. Irvine, K. D. Johnson, N. J. Fisher, E. W. Floden, L. Negron, S. G. Dempsey, R. J. McLaughlin, M. Vasudevamurthy, B. R. Ward and B. C. May: A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials, 31(16), 4517-29 (2010) doi:10.1016/j.biomaterials.2010.02.025.3. S. M. Irvine, J. Cayzer, E. M. Todd, S. Lun, E. W. Floden, L. Negron, J. N. Fisher, S. G. Dempsey, A. Alexander, M. C. Hill, A. O’Rouke, S. P. Gunningham, C. Knight, P. F. Davis, B. R. Ward and B. C. H. May: Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial. Biomaterials, 32(27), 6351-61 (2011) doi:10.1016/j.biomaterials.2011.05.040. 4. K. H. Sizeland, H. C. Wells, S. J. R. Kelly, K. E. Nesdale, B. C. H. May, S. G. Dempsey, C. H. Miller, N. Kirby, A. Hawley, S. Mudie, T. Ryan, D. Cookson and R. G. Haverkamp: Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering. ACS Biomater. Sci. Eng., 3(10), 2550–2558 (2017). 5. S. G. Dempsey, C. H. Miller, R. C. Hill, K. C. Hansen and B. C. H. May: Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix. J Proteome Res, 18(4), 1657-1668 (2019) doi:10.1021/acs.jproteome.8b00908. 6. S. G. Dempsey, C. H. Miller, J. Schueler, R. W. F. Veale, D. J. Day and B. C. H. May: A novel chemotactic factor derived from the extracellular matrix protein decorin recruits mesenchymal stromal cells in vitro and in vivo. PLoS One, 15(7), e0235784 (2020) doi:10.1371/journal.pone.0235784. 7. Data on file. 8. N. S. Greaves, S. A. Lqbal, J. Morris, B. Benatar, T. Alonso-Rasgado, M. Baguneid and A. Bayat: Acute cutaneous wounds treated with human decellularised dermis show enhanced angiogenesis during healing. PLoS One, 10(1), e0113209 (2015) doi:10.1371/journal.pone.0113209. 9. L. M. Delgado, Y. Bayon, A. Pandit and D. I. Zeugolis: To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B Rev, 21(3), 298-313 (2015) doi:10.1089/ten.TEB.2014.0290.
Overbeck, N., A. Beierschmitt, B. C. H. May, S. Qi and J. Koch (2022). “In-Vivo Evaluation of a Reinforced Ovine Biologic for Plastic and Reconstructive Procedures in a Non-human Primate Model of Soft Tissue Repair.” ePlasty 22(e43).
Smith, M. J., S. G. Dempsey, R. W. Veale, C. G. Duston-Fursman, C. A. F. Rayner, C. Javanapong, D. Gerneke, S. G. Dowling, B. A. Bosque, T. Karnik, M. J. Jerram, A. Nagarajan, R. Rajam, A. Jowsey, S. Cutajar, I. Mason, R. G. Stanley, A. Campbell, J. Malmstrom, C. H. Miller and B. C. H. May (2021). “Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair.” J Biomater Appl: 8853282211045770.
Dempsey, S. G., C. H. Miller, J. Schueler, R. W. F. Veale, D. J. Day and B. C. H. May (2020). “A novel chemotactic factor derived from the extracellular matrix protein decorin recruits mesenchymal stromal cells in vitro and in vivo.” PLoS One 15(7): e0235784.
Overbeck, N., G. M. Nagvajara, S. Ferzoco, B. C. H. May, A. Beierschmitt and S. Qi (2020). “In-vivo evaluation of a reinforced ovine biologic: a comparative study to available hernia mesh repair materials.” Hernia.
Dempsey, S. G., C. H. Miller, R. C. Hill, K. C. Hansen and B. C. H. May (2019). “Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix.” J Proteome Res 18(4): 1657-1668.
Frost, S. J., D. Mawad, R. Wuhrer, S. Myers and A. Lauto (2018). “Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding.” Biomed Eng Online 17(1): 7.
Dempsey, S. G., S. Cutajar, A. Nagarajan, R. Rajam, M. J. Jerram, T. Karnik, C. H. Miller and B. C. H. May (2018). Structural Diversity of Decellularized Ovine Forestomach Matrix. Symposium on Advanced Wound Care – Fall, Las Vegas, NV.
Sizeland, K. H., H. C. Wells, S. J. R. Kelly, K. E. Nesdale, B. C. H. May, S. G. Dempsey, C. H. Miller, N. Kirby, A. Hawley, S. Mudie, T. Ryan, D. Cookson and R. G. Haverkamp (2017). “Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering.” ACS Biomater. Sci. Eng. 3(10): 2550–2558.
Street, M., A. Thambyah, M. Dray, S. Amirapu, D. Tuari, K. E. Callon, J. D. McIntosh, K. Burkert, P. R. Dunbar, B. Coleman, J. Cornish and D. S. Musson (2015). “Augmentation with an ovine forestomach matrix scaffold improves histological outcomes of rotator cuff repair in a rat model.” J Orthop Surg Res 10: 165.
Negron, L., S. Lun and B. C. H. May (2014). “Ovine forestomach matrix biomaterial is a broad spectrum inhibitor of matrix metalloproteinases and neutrophil elastase.” Int Wound J 11(4): 392-397.
Merrilees, M. J., B. A. Falk, N. Zuo, M. E. Dickinson, B. C. H. May and T. N. Wight (2014). “Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin.” J Tissue Eng Regen Med 11(1): 295-305.
Irvine, S. M., J. Cayzer, E. M. Todd, S. Lun, E. W. Floden, L. Negron, J. N. Fisher, S. G. Dempsey, A. Alexander, M. C. Hill, A. O’Rouke, S. P. Cunningham, C. Knight, P. F. Davis, B. R. Ward and B. C. H. May (2011). “Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial.” Biomaterials 32(27): 6351-6361.
Irvine, S. M., J. Cayzer, E. M. Todd, S. Lun, E. W. Floden, L. Negron, S. G. Dempsey, A. Alexander, S. P. Gunningham, C. Knight, P. F. Davis, B. R. Ward and B. C. H. May (2011). Ovine Forestomach Matrix (OFM) Stimulates Angiogenesis In Vitro and In Vivo. Symposium on Advanced Wound Care – Spring, Dallas, TX.
Floden, E. W., S. F. F. Malak, M. M. Basil-Jones, L. Negron, J. N. Fisher, S. Lun, S. G. Dempsey, R. G. Haverkamp, B. R. Ward and B. C. H. May (2011). Biophysical Characterisation of Ovine Forestomach Extracellular Matrix Biomaterials. Australasian Society for Biomaterials and Tissue Engineering, Queenstown, New Zealand.
Floden, E. W., S. F. Malak, M. M. Basil-Jones, L. Negron, J. N. Fisher, S. Lun, S. G. Dempsey, R. G. Haverkamp, B. R. Ward and B. C. May (2010). “Biophysical characterization of ovine forestomach extracellular matrix biomaterials.” J Biomed Mater Res B Appl Biomater 96(1): 67-75.
Lun, S., S. M. Irvine, K. D. Johnson, N. J. Fisher, E. W. Floden, L. Negron, S. G. Dempsey, R. J. McLaughlin, M. Vasudevamurthy, B. R. Ward and B. C. H. May (2010). “A functional extracellular matrix biomaterial derived from ovine forestomach.” Biomaterials 31(16): 4517-4529.
May, B. C. H., S. M. Irvine, S. Lun, E. W. Floden and B. R. Ward (2010). Ovine Forestomach Matrix (EndoformTM) Stimulates Cell Differentiation and Vascularisation. Symposium on Advanced Wound Care – Spring, Orlando, FL.
May, B. C. H., S. Lun, J. N. Fisher, E. W. Floden and B. R. Ward (2009). Endoform™ Dermal Template – Authentic Complexity. Symposium on Advanced Wound Care – Spring, Dallas, Tx.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent.