Use of Ovine Extracellular Matrix in Post-Surgical Wounds: A Case Series

¹Adam Silverman, DPM and ²Gisele Valentine BSN, RN, CWS

¹Silverman Podiatry, Baltimore, MD; ²Appulse Medical, Hartford, CT

Case Study 2

Patient: 55 year old female

Trans metatarsal surgery and

placement of bilayer dermal

Surgical Procedure:

substitute.

Week 0:

Week 3:

8 x 5.8 cm.

10.5 x 8 cm.

ECM, NPWT.

Medical History: Diabetic, right foot infection

Wound Description: Partial 3rd and 4th ray

resection of foot with wet gangrene

Introduction

In high risk patients, acute surgical wounds can transition to a chronic state due to unresolved inflammation. Treatments that incorporate an intact extracellular matrix (ECM) can promote the rebuilding of tissue and effectively rebalancing proteases that would otherwise lead to a state of chronicity¹.

Methods

Patients (n=4) with significant tissue loss after surgical procedures to lower extremities were treated with ECM* technology and GV/MB[†] post operatively to encourage closure. Management of surgical sites included application of ECM, along with NPWT as required.

Conclusions

In all cases ECM technology led to the formation of granulation tissue and a decrease in wound size or wound closure. Using an ovine ECM soon after surgery is a useful tool to promote constructive remodelling of tissue and can be used effectively with NPWT to prevent wound chronicity.

References and Disclosures

1. Advances in Wound Care2013 Oct: 2(8): 438-447 doi 10.1089/wound.2012.0370 Financial support was provided by Aroa Biosurgery Limited (New Zealand) *Endoform Natural Dermal Template; †Hydrofera Blue; www.appulsemed.com

Results

Case Study 1

Patient: 61 year old male Medical History: H/O diabetes, PVD, CAD, Angioplasty, stenting Wound Description: 6 month old right foot ulcer, wet gangrene, slough and necrotic tissue

Previous Treatments: Metatarsal resection, HBO, IVAB

Surgical Procedure: S/P trans Metatarsal. Bilayer application.

Week 0: 8.3 x 8.5 cm. ECM, NPWT.

Week 6: 7.7 x 6.1 cm. ECM. NPWT. Granulation. epithelial tissue, 34% reduction

in wound area. ECM incorporating.

Week 12: 1 x 2 cm. Granulation tissue, 97% reduction in wound area.

ECM. GV/MB. 45% wound area reduction. red granulation Tissue. Week 14:

2.8 x 2 cm. ECM. GV/MB. 93% reduction to wound area. granulation tissue.

TCC.

Case Study 3

Patient: 55 year old male Medical History: H/O diabetic Wound Description: 2 year old left foot ulcer, Charcot deformity, group E Strep +ve

Surgical Procedure: Irrigation and surgical debridement

Week 0: 8.2 x 5.8 cm. ECM, NPWT.

Week 2: 8.5 x 5.2 cm. ECM. NPWT. Red granulation Tissue, ECM Incorporating.

Week 16: 4.3 x 3.2 cm. ECM, GV/MB, TCO, HBO. 71% reduction to wound area, granulation tissue.

Week 23: 1 x 0.9 cm. ECM. GV/MB.

Week 27: Closure

