Surgical Reconstruction of Stage 3 and 4 Pressure Injuries with ECM Technology: A Proposed Algorithm

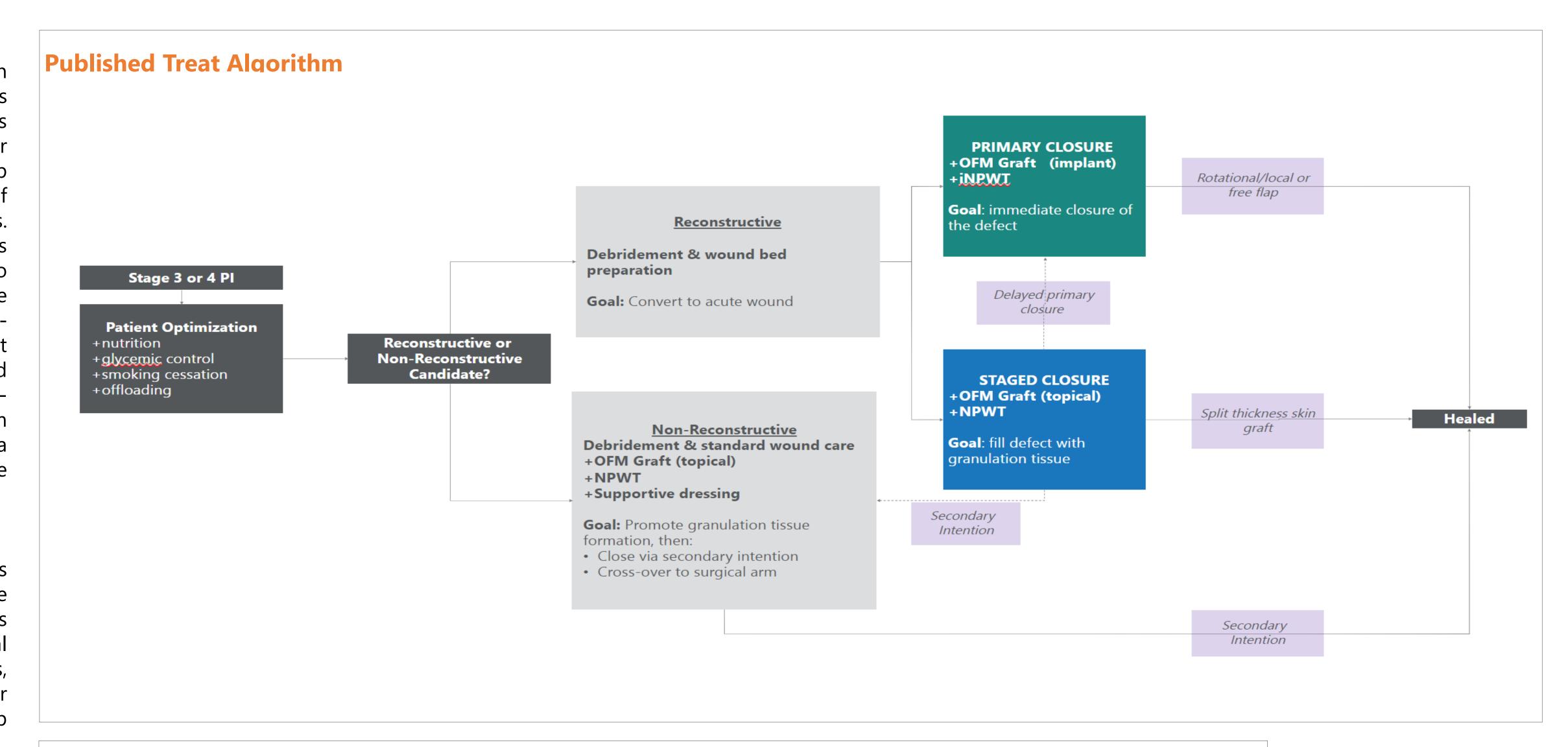
Abigail Chaffin¹, MD, FACS, CWSP, FAPWCA; Samir Awad, MD, PhD, FACS; James D. Stern MD, FACS; Cathy T. Milne, APRN ,MSN, ANP/ACNS-BC, CWOCN; Elizabeth Ayello, PhD, ETN, RN, CWON, FAAN; Leandro J. Feo Aguirre, MD, FACS, FASCRS; Basil Z. Khalaf, MD; Lisa J. Gould, MD; Michael N. Desvigne, MD, FACS, CWS

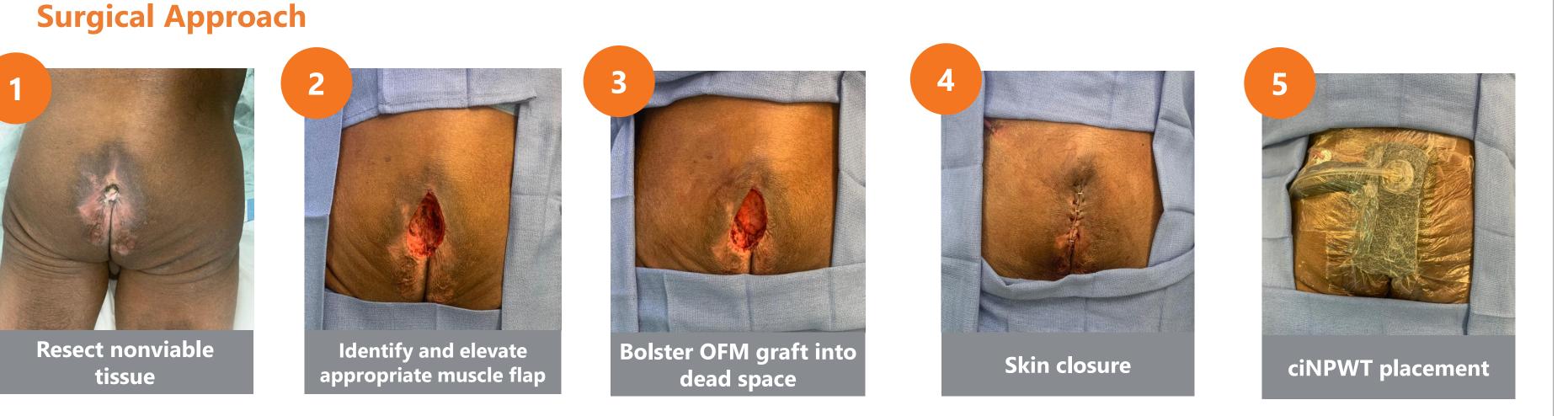
¹Professor and Chief, Division of Plastic Surgery at Tulane University, New Orleans, USA

INTRODUCTION

The burden of pressure injuries (PI) remains a substantial problem with over 1 in 10 adults patients admitted to hospitals affected with PIs [1]. As of 2011 it was estimated that the cost of treating a stage IV PI and its related complications was \$129,248. Additionally, the average 6 month post operative healing rates for a stage IV PI is 31-34% and the post operative complication rate after flap reconstruction is reported to be 58.7% [2]. Approaches to the surgical closure of late-stage PIs are varied and suffer from relatively high complication rates. Additionally, while the utilization of advanced technologies, namely biologics and negative-pressure wound therapy (NPWT), is widespread there is no consistency in their deployment as part of the surgical intervention of late-stage Pls. The absence of a robust algorithm defining the surgical intervention of latestage PIs led to the convening of an interdisciplinary panel to review the current state of the art and propose a treatment algorithm for the reconstructive and non-reconstructive intervention for late-stage PIs[3]. This abstract presents ongoing research from the interdisciplinary panel, including the Surgical Algorithm and four worked clinical case examples utilizing the algorithm along with a biologic graft as part of surgical reconstruction of these challenging soft tissue defects.

METHODS


Development of the Surgical Algorithm has previously been reported as developed by an inter-disciplinary clinical panel[3]. In cases utilizing the algorithm, a biologic graft comprising ovine forestomach matrix* (OFM) was included as part of the surgical intervention. Closed incision NPWT or traditional NPWT were used for the reconstructive and non-reconstructive cases, respectively. Patients were followed until closure and monitored for complications such as surgical wound dehiscence, hematoma, seroma, flap necrosis or infection. Data was collected retrospectively.


RESULTS

The surgical algorithm previously developed by the interdisciplinary panel has been put into practice across several US institutions. In the four cases included here-in to exemplify the approach, all patients healed, with no post operative complications.

CONCLUSION

A reproducible surgical algorithm utilizing advanced biologic technology, such as OFM, may assist in the accelerated healing of PIs and lower the post-operative complication rates. Further studies are on-going across the interdisciplinary panel to validate the inclusion of OFM-based graft in the Surgical Algorithm for late-stage PIs.

REFERENCES AND DISCLOSURES

Myriad Matrix™ (Aroa Biosurgery, LTD, Auckland,

[1Li, Z., F. Lin, L. Thalib and W. Chaboyer (2020). "Global prevalence and incidence of pressure injuries in hospitalised adult patients: A systematic review and meta-analysis." Int J Nurs Stud 105: 103546. [2] Bamba, R., J. J. Madden, A. N. Hoffman, J. S. Kim, W. P. Thayer, L. B. Nanney and M. E. Spear (2017). "Flap Reconstruction for Pressure Ulcers: An Outcomes Analysis." Plast Reconstr Surg Glob Open 5(1): e1187. [3] Awad SS, Stern JD, Milne CT, Dowling SG, Sotomayor R, Ayello EA, Feo Aguirre LJ, Khalaf BZ, Gould LJ, Desvigne MN, Chaffin AE. Surgical Reconstruction of Stage 3 and 4 Pressure Injuries: A Literature Review and Proposed Algorithm from an Interprofessional Working Group. Adv Skin Wound Care. 2023 May 1;36(5):249-258. 10.1097/01.ASW.0000922708.95424.88.

AC has a consulting agreement with Aroa Biosurgery, LTD