AROA ECM™ is a proprietary extracellular matrix (ECM) biomaterial containing a rich and complex mix of biological molecules that is the building block for our range of soft tissue repair products.
AROA ECM™ is manufactured from the ovine (sheep) forestomach tissue, sourced exclusively from New Zealand pasture-raised animals.(1) The source tissue is minimally processed to separate tissue layers and decellularize the tissue ECM. The resulting bioscaffold technology has the structure, composition and function of the ECM that is found in all our soft tissues.(1)
1. S. Lun, S. M. Irvine, K. D. Johnson, N. J. Fisher, E. W. Floden, L. Negron, S. G. Dempsey, R. J. McLaughlin, M. Vasudevamurthy, B. R. Ward and B. C. May: A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials, 31(16), 4517-29 (2010) doi:10.1016/j.biomaterials.2010.02.025.
Cells and the surrounding soft tissue extracellular matrix (ECM) constantly interact to modulate tissue physiology in a process called dynamic reciprocity.(1) In this process, matrix components play an important role in regulating tissue growth, maintenance and orchestrating the process of tissue regeneration. AROA ECM™ retains the authentic structure, signaling and substrates of tissue ECM to help guide tissue repair.(2, 3) Furthermore, AROA ECM™ retains the delicate micro-architecture of tissue ECM to influence the way cells attach, migrate, grow and differentiate.(4)
AROA ECM™ contains more than 150 ECM proteins that are known to be important in the healing process including structural proteins, adhesion proteins, proteoglycans, growth factors and basement membrane.(5) Components in the AROA ECM™ are also shown to attract stem cells.(6)
AROA ECM™ also contains residual vascular channels,(7) that facilitate the rapid establishment of a dense capillary network by supporting migrating endothelial cells to establish new vasculature and a robust blood supply to help build new tissue.(8)
AROA ECM™ is non-cross-linked to preserve the native matrix structure and reduce the risk of negative inflammatory responses due to cross-linking.(9) All AROA ECM™ products are shelf stable and terminally sterilized (ethylene oxide).
1. G. S. Schultz, J. M. Davidson, R. S. Kirsner, P. Bornstein and I. M. Herman: Dynamic reciprocity in the wound microenvironment. Wound Repair Regen, 19(2), 134-48 (2011) doi:10.1111/j.1524-475X.2011.00673.x. 2. S. Lun, S. M. Irvine, K. D. Johnson, N. J. Fisher, E. W. Floden, L. Negron, S. G. Dempsey, R. J. McLaughlin, M. Vasudevamurthy, B. R. Ward and B. C. May: A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials, 31(16), 4517-29 (2010) doi:10.1016/j.biomaterials.2010.02.025.3. S. M. Irvine, J. Cayzer, E. M. Todd, S. Lun, E. W. Floden, L. Negron, J. N. Fisher, S. G. Dempsey, A. Alexander, M. C. Hill, A. O’Rouke, S. P. Gunningham, C. Knight, P. F. Davis, B. R. Ward and B. C. H. May: Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial. Biomaterials, 32(27), 6351-61 (2011) doi:10.1016/j.biomaterials.2011.05.040. 4. K. H. Sizeland, H. C. Wells, S. J. R. Kelly, K. E. Nesdale, B. C. H. May, S. G. Dempsey, C. H. Miller, N. Kirby, A. Hawley, S. Mudie, T. Ryan, D. Cookson and R. G. Haverkamp: Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering. ACS Biomater. Sci. Eng., 3(10), 2550–2558 (2017). 5. S. G. Dempsey, C. H. Miller, R. C. Hill, K. C. Hansen and B. C. H. May: Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix. J Proteome Res, 18(4), 1657-1668 (2019) doi:10.1021/acs.jproteome.8b00908. 6. S. G. Dempsey, C. H. Miller, J. Schueler, R. W. F. Veale, D. J. Day and B. C. H. May: A novel chemotactic factor derived from the extracellular matrix protein decorin recruits mesenchymal stromal cells in vitro and in vivo. PLoS One, 15(7), e0235784 (2020) doi:10.1371/journal.pone.0235784. 7. Data on file. 8. N. S. Greaves, S. A. Lqbal, J. Morris, B. Benatar, T. Alonso-Rasgado, M. Baguneid and A. Bayat: Acute cutaneous wounds treated with human decellularised dermis show enhanced angiogenesis during healing. PLoS One, 10(1), e0113209 (2015) doi:10.1371/journal.pone.0113209. 9. L. M. Delgado, Y. Bayon, A. Pandit and D. I. Zeugolis: To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B Rev, 21(3), 298-313 (2015) doi:10.1089/ten.TEB.2014.0290.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Please wait while you are redirected to the right page...